Hệ thống quản lý E-learning trường THCS Thị trấn Đầm Hà
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3

A, B, C có bội số chung nhỏ nhất là 6

Các bước giải:

A= 1, B= 2, B=3

x= 8, y=5, z=3

Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6

A, B, C có bội số chung nhỏ nhất là 6.

Chúc bạn học tốt!

13 tháng 11 2024

Ta có \(\sqrt{2+2\cos2x}=\sqrt{2+2\left(2\cos^2x-1\right)}=\sqrt{4\cos^2x}=2\left|\cos x\right|\)

\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|,\forall x\inℝ\)  (1)

Đặt \(g\left(x\right)=f\left(x\right)-\left|\cos x\right|\)

Khi đó (1) \(\Leftrightarrow\left[f\left(x\right)-\left|\cos x\right|\right]+\left[f\left(-x\right)-\left|\cos x\right|\right]=0\)

\(\Leftrightarrow g\left(x\right)+\left[f\left(-x\right)-\left|\cos\left(-x\right)\right|\right]=0\) (do \(\cos x\) là hàm chẵn)

\(\Leftrightarrow g\left(x\right)+g\left(-x\right)=0\)

\(\Leftrightarrow g\left(x\right)=-g\left(-x\right)\)

\(\Leftrightarrow g\left(x\right)\) là hàm lẻ

Khi đó \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ. Thử lại, ta thấy:

(1) \(\Leftrightarrow f\left(x\right)+f\left(-x\right)=g\left(x\right)+\left|\cos x\right|+g\left(-x\right)+\left|\cos\left(-x\right)\right|\)

\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|\), thỏa mãn

 Vậy \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ bất kì có tập xác định là \(ℝ\)

 \(\Rightarrow I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}f\left(x\right)dx\)

 \(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left[g\left(x\right)+\left|\cos x\right|\right]dx\)

\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}g\left(x\right)dx+\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\)

\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\) (do \(g\left(x\right)\) là hàm lẻ)

\(I=\int\limits^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}\left(-\cos x\right)dx+\int\limits^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}\cos xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\left(-\cos x\right)dx\)

\(I=-\sin x|^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}+\sin x|^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}-\sin x|^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\)

\(I=6\)

 

 

10 tháng 11 2024

  \(x=3y\) và y = 5\(x\)  thay y = 5\(x\) vào \(x\) = 3y ta có: \(x\) = 3.5\(x\) 

    ⇒ \(x\)   = 15\(x\) ⇒ \(x-15x\) = 0 ⇒ \(-14\)\(x\) = 0 ⇒ \(x=0\)

Thay \(x\) = 0 vào y = 5\(x\) ta được:  y= 5.0 = 0

Vậy \(x=3\)y; y = 5\(x\) thì y = 0 

 

27 tháng 7 2024

\(y=\dfrac{x^2-\left(x^2+4mx+1\right)}{x+\sqrt{x^2+4mx+1}}=\dfrac{-4mx-1}{x+\sqrt{x^2+4mx+1}}\)

\(=\dfrac{-4mx-1}{x+\left|x\right|\sqrt{1+\dfrac{4m}{x}+\dfrac{1}{x^2}}}\)

\(\lim\limits_{x\rightarrow\pm\infty}y\dfrac{-4m-\dfrac{1}{x}}{1\pm\sqrt{1+\dfrac{4m}{x}+\dfrac{1}{x^2}}}=-4m\)

Để y = 1 là TCN => -4m = 1 => m = -1/4 

 

4 tháng 7 2024

Dựa vào đồ thị, ta thấy \(m=\min\limits_{\left[-1;3\right]}f\left(x\right)=f\left(2\right)=-4\)

và \(M=\max\limits_{\left[-1;3\right]}f\left(x\right)=f\left(-1\right)=2\)

Khi đó \(M+m=2-4=-2\)

30 tháng 6 2024

a, A''Có đúng 2 nữ''

\(C^2_3.C_{56}^2\)

\(P\left(A\right)=\dfrac{C_3^2.C_{56}^2}{C_{59}^4}\)

b, B''Có ít nhất 2 nam''

TH1 : Có 2 nam \(C_{56}^2.C_3^2\)

TH2 : Có 3 nam \(C_{56}^3.C_3^1\)

TH3 : Có 4 nam \(C^4_{56}\)

\(\Rightarrow C_{56}^2.C_3^2+C_{56}^3.C_3^1+C_{56}^4\)

\(P\left(B\right)=\dfrac{C_{56}^2.C_3^2+C_{56}^3.C_3^1+C_{56}^4}{C_{59}^4}\)

c, C''Có nhiều nhất 2 nam''

TH1 : Có 1 nam \(C_{56}^1.C_3^3\)

TH2 : Có 2 nam \(C_{56}^2.C_3^2\)

\(\Rightarrow C_{56}^2.C_3^3+C_{56}^2.C_3^2\)

\(P\left(C\right)=\dfrac{C_{56}^2.C_3^3+C^2_{56}.C_3^2}{C_{59}^4}\)