Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

💯 Ôn tập và kiểm tra chương III SVIP
Cho tam giác ABC có AB=16,CA=21,A=60∘. Độ dài cạnh BC là
Cho sinx=41,90∘<x<180∘. Khẳng định nào sau đây đúng?
Giá trị biểu thức P=sin30∘cos60∘+sin60∘cos30∘ bằng
Cho α và β là hai góc khác nhau và bù nhau. Đẳng thức nào sau đây sai?
Để đo khoảng cách từ một điểm A trên bờ sông đến một cái cây cổ thụ (C) trên cù lao ở giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy nhau và nhìn thấy C, người ta đo được AB=50m, α=CAB=41o, β=CBA=66o. Khoảng cách AC gần nhất với giá trị nào sau đây?
Áp dụng công thức Hê rông để tính diện tích. Áp dụng công thức S=4Rabc⇒R=4Sabc trong đó a, b, c là ba cạnh của tam giác và R là bán kính đường tròn ngoại tiếp.
Một tam giác có ba cạnh a = 3, b = 4, c = 5. Bán kính đường tròn ngoại tiếp R của tam giác bằng
Tam giác ABC có a=21,b=17,c=10. Gọi B′ là hình chiếu vuông góc của B trên cạnh AC. Độ dài BB′ bằng
Tam giác ABC có B=60∘, C=45∘, AB=5. Độ dài cạnh AC bằng
Tam giác ABC vuông tại A, đường cao AH=32 cm. Hai cạnh AB và AC tỉ lệ với 3 và 4. Cạnh nhỏ nhất của tam giác này có độ dài bằng
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây đúng?
Giá trị biểu thức P=sin30∘cos15∘+sin150∘cos165∘ bằng
Cho hai góc nhọn α và β trong đó α<β. Khẳng định nào sau đây sai?
Từ vị trí A người ta quan sát một cây cao (hình vẽ). Biết AH⊥HB,AH=4 m, HB=20 m, BAC=45∘. Chiều cao của cây gần nhất với giá trị nào dưới đây?
Tam giác ABC có AB=3,AC=6 và A=60∘. Bán kính của đường tròn ngoại tiếp tam giác ABC là
Tam giác ABC có BC=a,CA=b,AB=c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng
Cho tam giác ABC vuông cân tại A có AB=AC=30 cm. Hai đường trung tuyến BF và CE cắt nhau tại G. Diện tích tam giác GFC là
Cho tanα=4. Tính giá trị biểu thức P=−sinα+cosα2sinα−2cosα.
Cho tam giác ABC. Giá trị biểu thức P=sinA.cos(B+C)+cosA.sin(B+C) bằng
Cho biết tanα=−3. Giá trị của P=6cosα+7sinα6sinα−7cosα bằng
Cho biết cosα+sinα=31. Giá trị của P=tan2α+cot2α bằng
Tam giác ABC có AB = c = 6cm, AC = b = 5cm, BC = a = 7cm. Độ dài đường trung tuyến ma ứng với cạnh BC bằng |
|
Tam giác ABC có AB=4,BC=6, AC=5. Điểm M thuộc đoạn BC sao cho MC=2MB. Độ dài đoạn thẳng AM bằng |
|
Tam giác ABC có BC=23,AC=2AB và độ dài đường cao AH=2. Độ dài cạnh AB bằng
Tam giác ABC có AB=c, BC=a, CA=b. Các cạnh a, b, c liên hệ với nhau bởi đẳng thức b(b2−a2)=c(a2−c2). Khi đó góc BAC bằng
Bán kính đường tròn ngoại tiếp tam giác ABC biết AB=12 và cot(A+B)=31 bằng