Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Họ nghiệm của phương trình tan(x−4π)−1=0 là
Cho dãy số (un) với un=n2a−1. Khẳng định nào sau đây đúng?
Dãy số (un) nào sau đây là cấp số cộng?
Cấp số nhân (un) có số hạng tổng quát là un=53.2n−1,n∈N∗. Số hạng đầu tiên và công bội của cấp số nhân đó là
Cho cấp số nhân (un) có u1=2 và công bội q=−3. Tổng 4 số hạng đầu của cấp số nhân (un) bằng
Hàm số nào dưới đây là hàm số lẻ?
Hàm số nào dưới đây có đồ thị là đường cong như hình vẽ?
Nghiệm của phương trình sin2x=1 là
Cho mẫu số liệu ghép nhóm về chiều cao của 20 học sinh lớp lá như sau:
Chiều cao (cm) | [70;79) | [79;88) | [88;97) | [97;106) | [106;115) |
Số học sinh | 1 | 2 | 4 | 10 | 3 |
Trung vị của mẫu số liệu ghép nhóm này là
Nghiệm của phương trình 3cos2x=5cosx là
Cho cấp số cộng (un) có u5=−15, u20=60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là
Cho cấp số nhân (un) thỏa mãn {u1+u2+u3=13u4−u1=26. Tổng 8 số hạng đầu của cấp số nhân (un) bằng
Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:
Điểm |
[6;7) |
[7;8) |
[8;9) |
[9;10] |
Số học sinh |
8 |
7 |
10 |
5 |
a) Mẫu số liệu đã cho là mẫu số liệu ghép nhóm. |
|
b) Cỡ mẫu của mẫu số liệu là 30. |
|
c) Điểm trung bình của các học sinh là 7,9. |
|
d) Mốt của mẫu số liệu là 10. |
|
Cho phương trình sin(2x−4π)=sin(x+43π).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình có nghiệm x=π+k2πx=6π+k32π,(k∈Z). |
|
b) Trong khoảng (0;π) phương trình có 2 nghiệm. |
|
c) Tổng các nghiệm của phương trình trong khoảng (0;π) bằng 67π. |
|
d) Trong khoảng (0;π) phương trình có nghiệm lớn nhất bằng 65π. |
|
Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ ba và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Gọi un (ghế) là tổng số ghế ở hàng thứ n.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) u2=18. |
|
b) Dãy số (un) là cấp số cộng có công sai d=2. |
|
c) Số ghế ở hàng thứ 20 nhỏ hơn 54. |
|
d) Tổng số ghế trong nhà hát nhiều hơn 1000. |
|
Vào năm con gái được 4 tuổi, một người cha chuẩn bị gửi tiết kiệm đầu mỗi năm một số tiền x, (x∈N) để đến năm con gái 18 tuổi sẽ có được 200 triệu cho con gái đi học đại học. Hiện tại lãi suất tiền gửi hàng năm là 4,8%/năm. Giả sử lãi suất này được giữ ổn định.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng số tiền thu về sau 14 năm là một cấp số nhân có q=(1+4,8%). |
|
b) Số tiền tiết kiệm được sau năm thứ nhất là x+x.(1+4,8%). |
|
c) x=9. |
|
d) Đến năm con gái được 10 tuổi, người cha dự định khi con gái được 18 tuổi sẽ mua thêm cho con gái một chiếc xe máy trị giá 50 triệu đồng. Do đó, kể từ thời điểm đầu năm con gái được 10 tuổi người này cần gửi tiết kiệm y triệu đồng đến khi con gái 18 tuổi, (y∈N). Giá trị nhỏ nhất của y=15. |
|
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời:
Gọi n là số nghiệm của phương trình sin(2x+30∘)=23 trên khoảng (−180∘;180∘). Tìm n.
Trả lời:
Cho tam giác ABC vuông tại A có cạnh AB=6,AC=8. Điểm E thuộc đoạn AC sao cho CBE=30∘, điểm D thuộc tia đối của tia BA sao cho BCD=30∘. Tính độ dài đoạn AD. (làm tròn kết quả đến hàng phần mười)
Trả lời:
Cho dãy số (un) biết {u1=1;u2=2un+2=aun+1+(1−a)un,∀n∈N∗. Tìm giá trị nguyên nhỏ nhất của a để dãy số (un) tăng.
Trả lời:
Người ta trồng 3003 cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây, …, cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây được trồng là bao nhiêu?
Trả lời:
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời: