Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hai góc nhọn a và b với tana=71 và tanb=43. Tổng a+b bằng
Tập giá trị của hàm số y=sin2x là
Chu kì tuần hoàn T của hàm số y=2018tanx+2019 là
Nghiệm của phương trình tanx=−1 là
Cho cấp số cộng (un) với un=5−2n. Công sai của cấp số cộng đó là
Cho dãy số (un) được xác định bởi {u1=−2un=3un−1−1,∀n≥2. Số hạng u4 là
Cho cấp số cộng (un) có số hạng đầu bằng 2, công sai bằng −3. Tổng 99 số hạng đầu của cấp số cộng đã cho bằng
Cho dãy số có các số hạng đầu là 31;321;331;341;.... Số hạng tổng quát của dãy số này là
Cho sina=31. Giá trị của biểu thức A=tana+2cotacota−tana bằng
Giá trị lớn nhất của hàm số y=3sinx là
Trong các dãy số có công thức tổng quát sau, dãy số nào là cấp số cộng?
Đường cong trong hình vẽ là đồ thị của một trong bốn hàm số nào sau đây?
Cho hàm số f(x)=sin2x+cosx−1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số D=R. |
|
b) f(−π)=−f(π). |
|
c) f(−x)=f(x). |
|
d) Hàm số đã cho là hàm số chẵn. |
|
Cho phương trình lượng giác 2sinx=2.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình tương đương sinx=sin4π. |
|
b) Phương trình có nghiệm là: x=3π+k2π;x=43π+k2π,(k∈Z). |
|
c) Phương trình có nghiệm dương nhỏ nhất bằng 4π. |
|
d) Số nghiệm của phương trình trong khoảng (−2π;2π) là hai nghiệm. |
|
Khi kí kết hợp đồng lao động với người lao động, một doanh nghiệp đề xuất hai phương án trả lương như sau:
Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng. Kể từ năm thứ hai trở đi, mỗi năm tiền lương được tăng 18 triệu đồng.
Phương án 2: Quý thứ nhất, tiền lương là 24 triệu đồng. Kể từ quý thứ hai trở đi, mỗi quý tiền lương được tăng 1,8 triệu đồng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trong phương án 1: dãy số tiền lương là cấp số cộng có số hạng đầu tiên là u1=120, công sai d1=18. |
|
b) Trong phương án 1: tiền lương người lao động nhận được trong năm thứ ba là 174 triệu đồng. |
|
c) Trong phương án 1: tổng tiền lương người lao động nhận được trong ba năm là 414 triệu đồng. |
|
d) Nếu kí hợp đồng lao động trong ba năm, với mong muốn nhận được tổng số tiền lương cao nhất thì người lao động nên chọn phương án 1. |
|
Cho hàm số f(x)=∣x∣sinx.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số là D=R\{0}. |
|
b) f(−π)+f(π)=0. |
|
c) f(−x)=−f(x). |
|
d) Hàm số đã cho đối xứng qua gốc tọa độ O(0;0). |
|
Cho dãy số (un) biết un=n+2an+5. Có bao nhiêu giá trị nguyên của a nhỏ hơn 100 để dãy số (un) là dãy số tăng.
Trả lời:
Trong một thí nghiệm, một viên bi sắt được gắn vào một đầu lò xo đàn hồi, đầu còn lại được cố định vào một thanh treo ngang. Sau khi viên bi được kéo xuống và thả ra, nó bắt đầu di chuyển lên xuống. Khi đó, chiều cao h cm của bi so với mặt đất theo thời gian t giây được cho bởi công thức: h=100−30cos20t. Tính thời điểm đầu tiên mà bi sắt đạt chiều cao cao nhất kể từ khi nó được thả ra (làm tròn kết quả đến hàng phần trăm).
Trả lời:
Ông Sơn trồng cây trên một mảnh đất hình tam giác theo quy luật: ở hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây, hàng thứ ba có 3 cây…, ở hàng thứ n có n cây. Biết rằng ông đã trồng hết 11325 cây. Số hàng cây được trồng theo cách trên là bao nhiêu?
Trả lời:
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời:
Gọi M,N,P là các điểm trên đường tròn lượng giác sao cho số đo các góc lượng giác (OA,OM),(OA,ON),(OA,OP) lần lượt bằng 2π,67π,−6π. Số đo góc lớn nhất của tam giác MNP bằng bao nhiêu độ?
Trả lời:
Cho hình vuông A1B1C1D1 có cạnh bằng 4. Với mọi số nguyên dương n≥2, gọi An,Bn,Cn,Dn lần lượt là trung điểm của các cạnh An−1Bn−1,Bn−1Cn−1,Cn−1Dn−1, Dn−1An−1. Gọi Sn là diện tích của tứ giác AnBnCnDn. Tính S91.
Trả lời: