Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Thống kê số thẻ vàng của mỗi câu lạc bộ trong giải ngoại hạng Anh mùa giải 2021 – 2022 cho kết quả sau:
Số thẻ vàng | Tần số |
[40;50) | 2 |
[50;60) | 5 |
[60;70) | 7 |
[70;80) | 5 |
[80;90) | 0 |
[90;100) | 0 |
[100;110) | 1 |
Khoảng biến thiên của mẫu số liệu trên là
Cho hình hộp ABCD.A′B′C′D′, có đáy ABCD hình bình hành tâm O.
Khi đó 2AO bằng vectơ nào dưới đây?
Trong không gian với hệ tọa độ Oxyz, cho hai vectơ x=(2;1;−3) và y=(1;0;−1). Tọa độ của vectơ a=x+2y là
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A,B với OA=(2;−1;3),OB=(5;2;−1). Tọa độ của vectơ AB là
Giao điểm của đồ thị hàm số y=−x3+5x−2 với trục tung có toạ độ là
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x3−3x2−9x+35 trên đoạn [−4;4]. Giá trị của M và m lần lượt là
Hàm số nào sau đây luôn nghịch biến trên từng khoảng xác định của nó?
Hằng ngày ông Thắng đều đi xe buýt từ nhà đến cơ quan. Dưới đây là bảng thống kê thời gian của 100 lần ông Thắng đi xe buýt từ nhà đến cơ quan.
Thời gian (phút) |
Số lần |
[15;18) | 22 |
[18;21) | 38 |
[21;24) | 27 |
[24;27) | 8 |
[27;30) | 4 |
[30;33) | 1 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần trăm) bằng
Trong không gian với hệ trục tọa độ Oxyz (đơn vị đo lấy theo ki-lô-mét), ra-đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm A(800 ; 500 ; 7) đến điểm B(940 ; 550 ; 8) trong vòng 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo là C(x;y;z). Giá trị biểu thức H=x−y+z bằng
Cho hàm số y=−x3+3x+1 có đồ thị là hình vẽ nào sau đây?




Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức f(t)=t+526t+10;f(t) được tính bằng nghìn người. Xem f(t) là một hàm số xác định trên nửa khoảng [0;+∞). Đồ thị hàm số y=f(t) có đường tiệm cận ngang là y=a. Giá trị của a là
Cho hàm số y=f(x) có đạo hàm trên R và đồ thị hàm số y=f′(x) trên R như hình vẽ.
Mệnh đề nào sau đây đúng?
Cho bảng số liệu ghép nhóm thống kê số thẻ vàng của mỗi câu lạc bộ trong giải ngoại hạng Anh mùa giải 2021 – 2022 cho kết quả sau:
Số thẻ vàng | Tần số |
[40;50) | 2 |
[50;60) | 5 |
[60;70) | 7 |
[70;80) | 5 |
[80;90) | 0 |
[90;100) | 0 |
[100;110) | 1 |
a) Cỡ mẫu của mẫu số liệu trên là 20. |
|
b) Khoảng biến thiên của mẫu số liệu trên là 50. |
|
c) Tứ phân vị của thứ nhất của mẫu số liệu gốc thuộc vào nhóm [50;60). |
|
d) Khoảng tứ phân vị của mẫu số liệu trên là ΔQ=26. |
|
Trong không gian Oxyz, cho tam giác ABC có A(1;2;4),B(4;−2;1),C(3;4;7).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Toạ độ trọng tâm G của tam giác ABC là G(38;34;4). |
|
b) Toạ độ điểm D sao cho ABCD là hình bình hành là D(0;8;10). |
|
c) Toạ độ điểm M thuộc đoạn AB sao cho MB=2MA là M(2;32;3). |
|
d) cosBAC=34112. |
|
Một cơ sở đóng giày sản xuất mỗi ngày được x đôi giày (1≤x≤20). Tổng chi phí sản xuất x đôi giày (đơn vị nghìn đồng) là C(x)=x3−6x2−88x+592. Giả sử cơ sở này bán hết sản phẩm mỗi ngày với giá 200 nghìn đồng/một đôi. Gọi T(x) là số tiền bán được và L(x) là lợi nhuận thu được sau khi bán hết x đôi giày.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giả sử trong một ngày nào đó cơ sở sản xuất được 10 đôi giày thì lợi nhuận thu được là 1888000 (đồng). |
|
b) Giả sử trong một ngày nào đó cơ sở lợi nhuận thu được là 1584000 đồng, khi đó cơ sở phải sản xuất được 9 đôi giày. |
|
c) Cơ sở này sản xuất được 12 đôi giày thì lợi nhuận thu được là nhiều nhất. |
|
d) Lợi nhuận tối đa thu được trong một ngày là 1980000 đồng. |
|
Cho hàm số y=f(x)=x+12x2+5x+4.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tiệm cận đứng của đồ thị hàm số là x=−1. |
|
b) x→+∞limxf(x)=2. |
|
c) x→+∞lim[f(x)−2x]=5. |
|
d) Tiệm cận xiên của đồ thị hàm số là đường thẳng y=2x+3. |
|
Cho bảng thống kê nhiệt độ tại một địa điểm trong 40 ngày, ta có bảng số liệu sau:
Nhiệt độ (∘C) | Số ngày |
[19;22) | 7 |
[22;25) | 15 |
[25;28) | 12 |
[28;31) | 6 |
Tính phương sai của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến chữ số hàng phần trăm).
Trả lời: .
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A,B,C trên đèn tròn sao cho tam giác ABC đều. Độ dài L của ba đoạn dây OA,OB,OC đều bằng l (m). Trọng lượng của chiếc đèn là 27 N và bán kính của chiếc đèn là 0,5 m.
Xác định chiều dài tối thiểu của mỗi sợi dây. Biết rằng mỗi sợi dây đó được thiết kế để chịu được lực căng tối đa là 12 N. (Chiều dài tính theo đơn vị cm và làm tròn đến chữ số thập phân thứ nhất)
Trả lời:
Một chủ trang trại nuôi gia súc muốn rào thành hai chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng cho cừu, một chuồng cho gia súc. Chủ trang trại đang có 240 m hàng rào thì diện tích đất lớn nhất có thể bao quanh là bao nhiêu mét vuông?
Trả lời:
Một phần lát cắt của dãy núi có độ cao tính bằng mét được mô tả bởi hàm số y=h(x)=−13200001x3+35209x2−4481x+840 với 0≤x≤2000. Biết đỉnh của lát cắt dãy núi nằm ở độ cao h (m) thuộc đoạn [1000;2000]. Tính h. (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Có bao nhiêu giá trị nguyên của tham số m∈[−2024;2024] để hàm số y=x2+1−mx−1 đồng biến trên (−∞;+∞)?
Trả lời:
Gọi M,N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm đoạn MN và P là điểm bất kì trong không gian. Tìm giá trị k trong đẳng thức vectơ PI=k(PA+PB+PC+PD). (Ghi kết quả dưới dạng số thập phân)
Trả lời: