Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề số 2 (cấu trúc 2025) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong mặt phẳng Oxy, hypebol (H) có một tiêu điểm là F2(3;0) và cắt trục hoành tại điểm có hoành độ bằng −2 có phương trình chính tắc là
Số nghiệm của phương trình x−2x2−3x+1=1 là
Phương trình tổng quát của đường thẳng AB với A(1;1) và B(−3;2) là
Một hộp có 6 viên bi đỏ, 3 viên bi vàng và 4 viên bi xanh. Xác suất bạn An lấy từ hộp ra 4 viên bi sao cho có đúng hai viên bi màu đỏ là
Cho hai đường thẳng Δ1:2x+y+15=0 và Δ2:x−2y−3=0.
(Nhấp vào dòng để chọn đúng / sai)Δ1,Δ2 cắt nhau tại (−427;−421). |
|
Δ1,Δ2 vuông góc với nhau. |
|
Hai đường thẳng Δ1,Δ2 cắt nhau. |
|
Δ1 có vectơ pháp tuyến n1=(2;1),Δ2 có vectơ pháp tuyến n2=(1;−2). |
|
Một hộp có 5 bi xanh, 4 bi đỏ và 3 bi vàng. Có bao nhiêu cách chọn ra 3 viên bi có cả ba màu?
Hệ số của x3 trong khai triển Newton biểu thức (2x+1)5 bằng
Hàm số y=x2−4x+3 đồng biến trên khoảng nào trong các khoảng dưới đây?
Trong mặt phẳng tọa độ, cho hai đường thẳng d1:mx+2y−1=0 và d2:3x−(m+1)y+5+m=0. Để hai đường thẳng d1 và d2 vuông góc thì giá trị của m bằng
Trong mặt phẳng Oxy, cho điểm M(4;−1) và đường thẳng Δ:2x+3y+8=0. Khoảng cách từ điểm M đến đường thẳng Δ bằng
Cho đường tròn (C) có phương trình 3x2+3y2−6x+12y−12=0. Biết (C) có tâm I(a ; b) và bán kính R thì a+b+R bằng
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình x2+y2−4x+2y=0 và điểm M(1;1) thuộc đường tròn (C). Phương trình tiếp tuyến của đường tròn (C) tại điểm M(1;1) là đường thẳng
Gieo 1 đồng tiền và 1 con xúc xắc. Số phần tử của không gian mẫu là
Trong hệ trục tọa độ Oxy, cho đường tròn (C) tâm I(1;2) và cắt đường thẳng Δ:3x+4y−6=0 tại hai điểm A,B sao cho SIAB=4.
(Nhấp vào dòng để chọn đúng / sai)Khoảng cách từ tâm I đến đường thẳng Δ bằng 1. |
|
Bán kính đường tròn (C) nhỏ hơn 4. |
|
Phương trình đường tròn (C):x2+y2−2x−4y+12=0. |
|
Điểm O nằm trên đường tròn (C). |
|
Cho đường tròn (C):(x−2)2+y2=54 và các đường thẳng d1:x−y=0, d2:x−7y=0. Đường tròn (C′) có tâm I nằm trên đường tròn (C) và tiếp xúc với d1,d2 có bán kính bằng bao nhiêu? (Làm tròn kết quả đến chữ số hàng phần trăm)
Trả lời:
Một elip với bán trục lớn a và bán tiêu cự c tỉ số e=ac được gọi là tâm sai của elip. Quỹ đạo của trái đất quanh mặt trời là một elip (E) trong đó mặt trời là một trong các tiêu điểm.
Biết khoảng cách nhỏ nhất và lớn nhất giữa mặt trời và trái đất lần lượt là 147 triệu km, 152 triệu km. Tính tâm sai của elip (E). (Làm tròn kết quả tới chữ số thập phân thứ ba)
Trả lời:
Chọn ngẫu nhiên hai số trong tập hợp X={1;2;3;...;50}. Tính xác suất của biến cố B: "Trong hai số được chọn có một số lớn hơn 25, số còn lại nhỏ hơn hoặc bằng 25." (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Bạn An cùng một lúc bắn hai phát súng về đích A và đích B cách nhau 400 m. Biết vận tốc trung bình của viên đạn là 760 m/s. Viên đạn bắn về đích A nhanh hơn viên đạn bắn về đích B là 0,5 giây. Những vị trí mà bạn An đứng để có thể đạt được kết quả bắn tương tự như trên thuộc đường hypebol có phương trình chính tắc dạng mx2−ny2=1. Tính 100m+n.
Trả lời:
Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Xét phép thử chọn ngẫu nhiên 3 viên bi.
(Nhấp vào dòng để chọn đúng / sai)Không gian mẫu của phép thử là: 816. |
|
Xác suất để chọn được 3 viên bi đỏ là 2721. |
|
Xác suất để chọn được 3 viên bi gồm 3 màu là 13635. |
|
Xác suất chọn được nhiều nhất 2 viên bi xanh là 408403. |
|
Bộ bài tú lơ khơ có 52 quân bài, trong đó gồm 13 tứ quý là A; 2; 3; ...; 10; J; Q và K. Rút ngẫu nhiên ra 4 quân bài.
(Nhấp vào dòng để chọn đúng / sai)Xác suất của biến cố A: "Rút ra được tứ quý Át" là 521. |
|
Xác suất của biến cố B: "Rút ra được hai quân Át, hai quân K" là 27072536. |
|
Xác suất của biến cố C: "Rút ra được ít nhất một quân Át" là 5414538916. |
|
Xác suất của biến cố D: "Rút ra được 4 quân trong đó có đúng 2 quân ở cùng một tứ quý và hai quân còn lại ở hai tứ quý khác nhau" là 27072582368. |
|
Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất?
Trả lời: triệu đồng
Ông A có 800 triệu đồng và ông B có 950 triệu đồng gửi hai ngân hàng khác nhau với lãi suất lần lượt là 7%/năm và 5%/năm. Dùng tổng hai số hạng đầu tiên trong khai triển của nhị thức Newton, ước lượng sau một thời gian thì số tiền của hai ông thu được là bằng nhau và mỗi người khi đó nhận được là bao nhiêu tỉ đồng?
Trả lời: tỉ đồng.