Nguyễn Hà Linh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Hà Linh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta có: \(\Delta = \left(\right. m + 2 \left.\right)^{2} - 8 m = m^{2} - 4 m + 4 = \left(\right. m - 2 \left.\right)^{2} \geq 0 , \forall m\).

Suy ra phương trình có hai nghiệm phân biệt \(x_{1} , x_{2}\) với mọi \(m\) khi \(m \neq 2\).

Áp dụng hệ thức Viète ta có \(x_{1} + x_{2} = - m - 2 ; x_{1} x_{2} = 2 m\)

\(2 \left(\right. x_{1} + x_{2} \left.\right) = - 2 m - 4 ; x_{1} x_{2} = 2 m\)

\(2 \left(\right. x_{1} + x_{2} \left.\right) + x_{1} x_{2} = - 4\)

Biểu thức liên hệ giữa \(x_{1} , x_{2}\) không phụ thuộc vào tham số \(m\) là \(2 \left(\right. x_{1} + x_{2} \left.\right) + x_{1} x_{2} = - 4\).

Ta có \(a . c = - 1 < 0\) nên phương trình đã cho luôn có hai nghiệm \(x_{1} , x_{2}\) phân biệt.

Theo định lí Viète ta có: \(x_{1} + x_{2} = 1\) và \(x_{1} . x_{2} = - 1\)

Ta có:

\(P \left(\right. x_{1} \left.\right) = P \left(\right. x_{2} \left.\right)\)

\(3 x_{1} - \sqrt{33 x_{1} + 25} = 3 x_{2} - \sqrt{33 x_{2} + 25}\)

\(3 \left(\right. x_{1} - x_{2} \left.\right) - \left(\right. \sqrt{33 x_{1} + 25} - \sqrt{33 x_{2} + 25} \left.\right) = 0\)

\(3 \left(\right. x_{1} - x_{2} \left.\right) - \frac{33 \left(\right. x_{1} - x_{2} \left.\right)}{\sqrt{33 x_{1} + 25} + \sqrt{33 x_{2} + 25}} = 0\)

\(1 - \frac{11}{\sqrt{33 x_{1} + 25} + \sqrt{33 x_{2} + 25}} = 0\)

\(\sqrt{33 x_{1} + 25} + \sqrt{33 x_{2} + 25} = 11\)

\(\left(\right. \sqrt{33 x_{1} + 25} + \sqrt{33 x_{2} + 25} \left.\right)^{2} = 121\)

\(33 \left(\right. x_{1} + x_{2} \left.\right) + 50 + 2 \sqrt{\left(\right. 33 x_{1} + 25 \left.\right) \left(\right. 33 x_{2} + 25 \left.\right)} = 121\) (*)

Ta có VT(*) \(= 33.1 + 50 + 2 \sqrt{3 3^{2} x_{1} x_{2} + 33.25 \left(\right. x_{1} + x_{2} \left.\right) + 2 5^{2}}\)

\(= 83 + 2 \sqrt{- 3 3^{2} + 2 533 + 2 5^{2}}\)

\(=83+2\sqrt{361}=83+83=121\)

Ta có \(\Delta_{1} , \Delta_{2} > 0\) suy ra hai phương trình luôn có hai nghiệm phân biệt.

Theo định lí Viète ta có:

\(\left{\right. & x_{1} + x_{2} = - 2 024 ; x_{1} . x_{2} = 2 \\ & x_{3} + x_{4} = - 2 025 ; x_{3} . x_{4} = 2\)

\(\left(\right. x_{1} + x_{3} \left.\right) \left(\right. x_{1} + x_{4} \left.\right) = x_{1}^{2} + x_{1} \left(\right. x_{3} + x_{4} \left.\right) + x_{3} x_{4} = x_{1}^{2} - 2 025 x_{1} + 2\).

Lại có \(x_{1}\) là nghiệm phương trình \(x^{2} + 2 024 x + 2 = 0\) nên:

\(x_{1}^{2} + 2 024 x_{1} + 2 = 0\)

\(x_{1}^{2} - 2 025 x_{1} + 2 + 4 049 x_{1} = 0\)

\(x_{1}^{2} - 2 025 x_{1} + 2 = - 4 049 x_{1}\)

\(\left(\right. x_{1} + x_{3} \left.\right) \left(\right. x_{2} + x_{4} \left.\right) = - 4 049 x_{1}\) (1) 

Tương tự: \(\left(\right. x_{2} - x_{3} \left.\right) \left(\right. x_{2} - x_{4} \left.\right) = x_{2}^{2} - x_{2} \left(\right. x_{3} + x_{4} \left.\right) + x_{3} x_{4} = x_{2}^{2} + 2 025 x_{2} + 2\)

Mà \(x_{2}\) là nghiệm phương trình \(x^{2} + 2 024 x + 2 = 0\) nên

\(x_{2}^{2} + 2 024 x_{2} + 2 = 0\)

\(x_{2}^{2} + 2 025 x_{2} + 2 - x_{2} = 0\)

\(x_{2}^{2} + 2 025 x_{2} + 2 = x_{2}\)

\(\left(\right. x_{2} - x_{3} \left.\right) \left(\right. x_{2} - x_{4} \left.\right) = x_{2}\) (2)

Từ (1) và (2) ta có: \(\left(\right. x_{1} + x_{3} \left.\right) \left(\right. x_{2} + x_{4} \left.\right) \left(\right. x_{2} - x_{3} \left.\right) \left(\right. x_{2} - x_{4} \left.\right) = - 4 049 x_{1} . x_{2}\)

hay \(A = - 4 049 x_{1} x_{2} = - 4 049.2 = - 8 098\).

Vậy \(A = - 8 098\).

a) \(\Delta^{'} = m^{2} + 3 > 0\) với mọi \(m\) nên phương trình (1) luôn có hai nghiệm phân biệt.

b) Theo định lí Viète ta có: \(x_{1} + x_{2} = 2 \left(\right. m + 1 \left.\right)\).

Vì \(x_{1}\) là nghiệm của phương trình nên ta có:

\(x_{1}^{2} - 2 \left(\right. m + 1 \left.\right) x_{1} + 2 m - 2 = 0\) hay \(x_{1}^{2} + 2 m - 2 = 2 \left(\right. m + 1 \left.\right) x_{1}\).

Suy ra \(B = 2 \left(\right. m + 1 \left.\right) x_{1} + 2 \left(\right. m + 1 \left.\right) x_{2} = 2 \left(\right. m + 1 \left.\right) \left(\right. x_{1} + x_{2} \left.\right) = 4 \left(\right. m + 1 \left.\right)^{2}\).

a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu.

b) Gọi \(x_{1} , x_{2}\) là các nghiệm của phương trình (1). Tính giá trị của biểu thức \(A = \frac{x_{1}^{2} + x_{1} - 1}{x_{1}} - \frac{x_{2}^{2} + x_{2} - 1}{x_{2}}\).

Hướng dẫn giải:

a) \(x^{2} - m x - 1 = 0\) (1)

Ta có \(a c = - 1 < 0\) suy ra phương trình (1) luôn có hai nghiệm \(x_{1} , x_{2}\) trái dấu.

b) Ta có \(x_{1}\) là nghiệm của phương trình (1) suy ra \(x_{1}^{2} - m x_{1} - 1 = 0\)

hay \(x_{1}^{2} - 1 = m x_{1}\);

Tương tự ta có \(x_{2}\) là nghiệm của phương trình (1) suy ra \(x_{2}^{2} - m x_{2} - 1 = 0\)

hay \(x_{2}^{2} - 1 = m x_{2}\).

\(A = \frac{x_{1}^{2} + x_{1} - 1}{x_{1}} - \frac{x_{2}^{2} + x_{2} - 1}{x_{2}}\)

\(= \frac{m x_{1} + x_{1}}{x_{1}} - \frac{m x_{2} + x_{2}}{x_{2}}\)

\(= \frac{\left(\right. m + 1 \left.\right) x_{1}}{x_{1}} - \frac{\left(\right. m + 1 \left.\right) x_{2}}{x_{2}} = 0\).

Vậy \(A = 0\).

a, t>5

b,x≥16

c,mức lương tối thiểu≤20 000đ

d, y>0

a) ĐKXĐ: x ≠ -5

Phương trình đã cho trở thành:

(x + 6).2 + 3.(x + 5) = 2.2(x + 5)

2x + 12 + 3x + 15 = 4x + 20

5x - 4x = 20 - 12 - 15

x = -7 (nhận)

Vậy S = {-7}

b) x + 3y = -2

x = -2 - 3y (1)

5x + 8y = 11 (2)

Thế (1) vào (2), ta được:

5(-2 - 3y) + 8y = 11

-10 - 15y + 8y = 11

-7y = 11 + 10

-7y = 21

y = 21 : (-7)

y = -3

Thế y = -3 vào (1), ta được:

x = -2 - 3.(-3) = 7

Vậy S = {7; -3}

1) sin35⁰ = cos(90⁰ - 35⁰) = cos55⁰

Vậy sin35⁰ = cos55⁰

tan35⁰ = cot(90⁰ - 35⁰) = cot55⁰

Vậy tan35⁰ = cot55⁰

2) ∆ABC vuông tại A (gt)

⇒ AB = BC.cosB

= 20.cos36⁰

≈ 16,18 (cm)

Gọi vận tốc của người đi xe máy trên 3/4 quãng đường AB đầu (90 km) là x (km/h) (x > 0)

Vận tốc của người đi xe máy trên 1/4 quãng đường AB sau là 0,5x (km/h)

Vận tốc của người đi xe máy khi quay trở lại A là x + 10 (km/h)

Tổng thời gian của chuyến đi là  90 x + 30 0 , 5 x + 120 x + 10 + 1 2 = 8 , 5

⇔ 90 x + 60 x + 120 x + 10 = 8 ⇔ 150 x + 120 x + 10 = 8 ⇔ 75 ( x + 10 ) + 60 x = 4 x ( x + 10 ) ⇔ 4 x 2 − 95 x − 750 = 0 ⇔ x = 30   ( d o   x > 0 )

Vậy vận tốc của xe máy trên quãng đường người đó đi từ B về A là 30 + 10 = 40 (km/h)

∆ABC vuông tại A

⇒ tanC = AB : AC = 2/2,5 = 0,8

⇒ C ≈ 39⁰

⇒ ACD = 20⁰ + 39⁰ = 59⁰

∆ACD vuông tại A

⇒ tanACD = AD/AC

⇒ AD = AC.tanACD

= 2,5.tan59⁰

≈ 4,2 (m)

Độ dài vùng được chiếu sáng trên mặt đất:

BD = AD - AB = 4,2 - 2 = 2,2 (m)