

Đỗ Nguyễn Huy
Giới thiệu về bản thân
Chào mừng bạn đến với trang cá nhân của Đỗ Nguyễn Huy





0





0





0





0





0





0





0
2025-05-07 19:11:40
a) y= -x^3 + 3x + 1
- Tính đạo hàm:
y'= -3x^2 + 3 = 3(1 - x^2)
- Xét dấu y':
- y'= 0 => x = +-1
- Tìm giá trị cực trị:
- x = -1 =>y = -(-1)^3 + 3(-1) + 1 = 1 - 3 + 1 = -1
- x = 1 =>y = -(1)^3 + 3(1) + 1 = -1 + 3 + 1 = 3
=> Cực tiểu tại (-1, -1), cực đại tại (1, 3)
b) y = x^3 - 3x^2 + 4
- Tính đạo hàm:
y' = 3x^2 - 6x = 3x(x - 2)
- Xét dấu y':
- y'= 0 => x = 0 hoặc x = 2
- Tìm giá trị cực trị:
- x = 0 => y = 0 - 0 + 4 = 4
- x = 2 => y = 8 - 12 + 4 = 0
=> Cực tiểu tại (0, 4), cực đại tại (2, 0)
Đây là đồ thị của hai hàm số:
- Hàm y = -x^3 + 3x + 1 (đường màu xanh dương)
- Hàm y = x^3 - 3x^2 + 4 (đường màu đỏ)