

Vũ Thanh Bình
Giới thiệu về bản thân



































(x2+y2)24x2y2−1+y2x2+x2y2−2≥0
\(\frac{4 x^{2} y^{2} - \left(\right. x^{2} + y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{x^{4} + y^{4} - 2 x^{2} y^{2}}{x^{2} y^{2}} \geq 0\)
\(\frac{- \left(\right. x^{2} - y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{\left(\right. x^{2} - y^{2} \left.\right)^{2}}{x^{2} y^{2}} \geq 0\)
\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \left[\right. \frac{1}{x^{2} y^{2}} - \frac{1}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} \&\text{nbsp}; \left]\right. \geq 0\)
\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{\left(\right. x^{2} + y^{2} \left.\right)^{2} - x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\)
\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{x^{4} + y^{4} + x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\).
Dấu bằng xảy ra khi và chỉ khi \(x = y\) hoặc \(x = - y\).
(x2+y2)24x2y2−1+y2x2+x2y2−2≥0
\(\frac{4 x^{2} y^{2} - \left(\right. x^{2} + y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{x^{4} + y^{4} - 2 x^{2} y^{2}}{x^{2} y^{2}} \geq 0\)
\(\frac{- \left(\right. x^{2} - y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{\left(\right. x^{2} - y^{2} \left.\right)^{2}}{x^{2} y^{2}} \geq 0\)
\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \left[\right. \frac{1}{x^{2} y^{2}} - \frac{1}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} \&\text{nbsp}; \left]\right. \geq 0\)
\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{\left(\right. x^{2} + y^{2} \left.\right)^{2} - x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\)
\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{x^{4} + y^{4} + x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\).
Dấu bằng xảy ra khi và chỉ khi \(x = y\) hoặc \(x = - y\).
Chứng minh được: \(\Delta \&\text{nbsp}; A B C \sim \Delta \&\text{nbsp}; H B A\) (g.g)
Từ đó suy ra \(A B^{2} = B C . B H\)
\(\hat{A E D} = \hat{A D E}\) (Cùng phụ với \(\hat{A B D} = \hat{C B D}\))
Suy ra \(\Delta A E D\) cân tại \(A\) suy ra \(A I\) vuông góc với \(D E\) tại \(I\).
Chứng minh \(\Delta E H B\) và \(\Delta E I A\) đồng dạng (g.g).
Từ đó suy ra \(\frac{E I}{E H} = \frac{E A}{E B}\) nên \(E I . E B = E H . E A\).
(x2+y2)24x2y2−1+y2x2+x2y2−2≥0
\(\frac{4 x^{2} y^{2} - \left(\right. x^{2} + y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{x^{4} + y^{4} - 2 x^{2} y^{2}}{x^{2} y^{2}} \geq 0\)
\(\frac{- \left(\right. x^{2} - y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{\left(\right. x^{2} - y^{2} \left.\right)^{2}}{x^{2} y^{2}} \geq 0\)
\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \left[\right. \frac{1}{x^{2} y^{2}} - \frac{1}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} \&\text{nbsp}; \left]\right. \geq 0\)
\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{\left(\right. x^{2} + y^{2} \left.\right)^{2} - x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\)
\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{x^{4} + y^{4} + x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\).
Dấu bằng xảy ra khi và chỉ khi \(x = y\) hoặc \(x = - y\).
1
a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có
N^N chung
Do đó: ΔKNM~ΔMNP
Xét ΔKNM vuông tại K và ΔKMP vuông tại K có
KNM^=KMP^(=900−KMN^)KNM=KMP(=900−KMN)
Do đó; ΔKNM~ΔKMP
b: Ta có: ΔKNM~ΔKMP
=>KNKM=KMKPKMKN=KPKM
=>KM2=KN⋅KPKM2=KN⋅KP
c: Xét ΔMNP vuông tại M có MK là đường cao
nên MK2=KN⋅KPMK2=KN⋅KP
=>MK2=4⋅9=36=62MK2=4⋅9=36=62
=>MK=62=6(cm)MK=62=6(cm)
PN=PK+NK
=4+9=13(cm)
Xét ΔMNP có MK là đường cao
nên SMNP=12⋅MK⋅NP=12⋅6⋅13=3⋅13=39(cm2)SMNP=21⋅MK⋅NP=21⋅6⋅13=3⋅13=39(cm2)
a,A=x2−1x2−2x+1=(x−1)(x+1)(x−1)2=x+1x−1
b,b, Khi x=3x=3 thì :
x−1x+1=3−13+1=24=12x+1x−1=3+13−1=42=21
Khi x=−3/2x=−3/2 thì :
−32−1−32+1=−32−22−32+22=−52−12=−52⋅(−2)=102=5−23+1−23−1=−23+22−23−22=−21−25=−25⋅(−2)=210=5
c,c, Để AA nhận giá trị nguyên ta có :
x−1x+1=x+1−2x+1=x+1x+1−2x+1x+1x−1=x+1x+1−2=x+1x+1−x+12
Vậy x+1∈Ư(2)={±1;±2}x+1∈Ư(2)={±1;±2}
−>x+1=1=>x=0−>x+1=1=>x=0
−>x+1=−1=>x=−2−>x+1=−1=>x=−2
−>x+1=2=>x=1−>x+1=2=>x=1
−>x+1=−2=>x=−3−>x+1=−2=>x=−3
a) 7x + 2 = 0
7x = 0 - 2
7x = -2
x = -2/7
Vậy S = {-2/7}
b) 18 - 5x = 7 + 3x
3x + 5x = 18 - 7
8x = 11
x = 11/8
Vậy S = {11/8}