Vũ Thanh Bình

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Vũ Thanh Bình
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

(x2+y2)24x2y2−1+y2x2+x2y2−2≥0

\(\frac{4 x^{2} y^{2} - \left(\right. x^{2} + y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{x^{4} + y^{4} - 2 x^{2} y^{2}}{x^{2} y^{2}} \geq 0\)

\(\frac{- \left(\right. x^{2} - y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{\left(\right. x^{2} - y^{2} \left.\right)^{2}}{x^{2} y^{2}} \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \left[\right. \frac{1}{x^{2} y^{2}} - \frac{1}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} \&\text{nbsp}; \left]\right. \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{\left(\right. x^{2} + y^{2} \left.\right)^{2} - x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{x^{4} + y^{4} + x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\).

Dấu bằng xảy ra khi và chỉ khi \(x = y\) hoặc \(x = - y\).

(x2+y2)24x2y2−1+y2x2+x2y2−2≥0

\(\frac{4 x^{2} y^{2} - \left(\right. x^{2} + y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{x^{4} + y^{4} - 2 x^{2} y^{2}}{x^{2} y^{2}} \geq 0\)

\(\frac{- \left(\right. x^{2} - y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{\left(\right. x^{2} - y^{2} \left.\right)^{2}}{x^{2} y^{2}} \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \left[\right. \frac{1}{x^{2} y^{2}} - \frac{1}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} \&\text{nbsp}; \left]\right. \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{\left(\right. x^{2} + y^{2} \left.\right)^{2} - x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{x^{4} + y^{4} + x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\).

Dấu bằng xảy ra khi và chỉ khi \(x = y\) hoặc \(x = - y\).

Chứng minh được: \(\Delta \&\text{nbsp}; A B C \sim \Delta \&\text{nbsp}; H B A\) (g.g)

Từ đó suy ra \(A B^{2} = B C . B H\)

\(\hat{A E D} = \hat{A D E}\) (Cùng phụ với \(\hat{A B D} = \hat{C B D}\))

Suy ra \(\Delta A E D\) cân tại \(A\) suy ra \(A I\) vuông góc với \(D E\) tại \(I\).

Chứng minh \(\Delta E H B\) và \(\Delta E I A\) đồng dạng (g.g).

Từ đó suy ra \(\frac{E I}{E H} = \frac{E A}{E B}\) nên \(E I . E B = E H . E A\).

(x2+y2)24x2y2−1+y2x2+x2y2−2≥0

\(\frac{4 x^{2} y^{2} - \left(\right. x^{2} + y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{x^{4} + y^{4} - 2 x^{2} y^{2}}{x^{2} y^{2}} \geq 0\)

\(\frac{- \left(\right. x^{2} - y^{2} \left.\right)^{2}}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} + \frac{\left(\right. x^{2} - y^{2} \left.\right)^{2}}{x^{2} y^{2}} \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \left[\right. \frac{1}{x^{2} y^{2}} - \frac{1}{\left(\right. x^{2} + y^{2} \left.\right)^{2}} \&\text{nbsp}; \left]\right. \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{\left(\right. x^{2} + y^{2} \left.\right)^{2} - x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\)

\(\left(\right. x^{2} - y^{2} \left.\right)^{2} . \frac{x^{4} + y^{4} + x^{2} y^{2}}{x^{2} y^{2} \left(\right. x^{2} + y^{2} \left.\right)^{2}} \geq 0\).

Dấu bằng xảy ra khi và chỉ khi \(x = y\) hoặc \(x = - y\).

a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có

N^N chung

Do đó: ΔKNM~ΔMNP

Xét ΔKNM vuông tại K và ΔKMP vuông tại K có

KNM^=KMP^(=900−KMN^)KNM=KMP(=900KMN)

Do đó; ΔKNM~ΔKMP

b: Ta có: ΔKNM~ΔKMP

=>KNKM=KMKPKMKN=KPKM

=>KM2=KN⋅KPKM2=KNKP

c: Xét ΔMNP vuông tại M có MK là đường cao

nên MK2=KN⋅KPMK2=KNKP

=>MK2=4⋅9=36=62MK2=49=36=62

=>MK=62=6(cm)MK=62=6(cm)

PN=PK+NK

=4+9=13(cm)

Xét ΔMNP có MK là đường cao

nên SMNP=12⋅MK⋅NP=12⋅6⋅13=3⋅13=39(cm2)SMNP=21MKNP=21613=313=39(cm2)

a,A=x21x22x+1=(x1)(x+1)(x1)2=x+1x1

b,b, Khi x=3x=3 thì :

x−1x+1=3−13+1=24=12x+1x1=3+131=42=21

Khi x=−3/2x=3/2 thì :

−32−1−32+1=−32−22−32+22=−52−12=−52⋅(−2)=102=523+1231=23+222322=2125=25(2)=210=5

c,c, Để AA nhận giá trị nguyên ta có :

x−1x+1=x+1−2x+1=x+1x+1−2x+1x+1x1=x+1x+12=x+1x+1x+12

Vậy x+1∈Ư(2)={±1;±2}x+1Ư(2)={±1;±2}

−>x+1=1=>x=0>x+1=1=>x=0

−>x+1=−1=>x=−2>x+1=1=>x=2

−>x+1=2=>x=1>x+1=2=>x=1

−>x+1=−2=>x=−3>x+1=2=>x=3

a) 7x + 2 = 0

7x = 0 - 2

7x = -2

x = -2/7

Vậy S = {-2/7}

b) 18 - 5x = 7 + 3x

3x + 5x = 18 - 7

8x = 11

x = 11/8

Vậy S = {11/8}