

Trần Khánh Chi
Giới thiệu về bản thân



































M(x) = x^8 - 101 x^7 + 101x^6 - 101x^5 + … + 101x^2 - 101x + 125
=x8−100x7−x7+100x6+x6−100x5−x5+...+100x2+x2−100x−x+100+25
\(= x^{7} \left(\right. x - 100 \left.\right) - x^{6} \left(\right. x - 100 \left.\right) + x^{5} \left(\right. x - 100 \left.\right) - . . . + x \left(\right. x - 100 \left.\right) - \left(\right. x - 100 \left.\right) + 25\)
Vậy \(M \left(\right. 100 \left.\right) = 25\).
a) Xét \(\Delta B A D\) và \(\Delta E A D\):
\(\hat{A B D} = \hat{A E D} = 9 0^{\circ}\).
\(A D\) chung.
\(\hat{B A D} = \hat{E A D} \left(\right. g t \left.\right)\).
Suy ra \(\Delta B A D = \Delta E A D\) (cạnh huyền - góc nhọn)
b) Do \(\Delta B A D = \Delta E A D\) (câu a) nên
+ ) \(A B = A E\) (Cặp cạnh tương ứng)
\(A\) nằm trên đường trung trực của đoạn thẳng \(B E\) (1)
+) \(D B = D E\) (Cặp cạnh tương ứng)
\(D\) nằm trên đường trung trực của đoạn thẳng \(B E\) (2)
Từ (1) và (2) ta suy ra \(A D\) là đường trung trực của \(B E\).
c) Xét \(\Delta B D K\) và \(\Delta E D C\):
\(B K = C E\) (gt).
\(\hat{K B D} = \hat{C E D} = 9 0^{\circ}\).
\(B D = D E\) (chứng minh trên).
Suy ra \(\Delta B D K = \Delta E D C\) (c.g.c)
Suy ra \(\hat{B D K} = \hat{E D C}\) (Cặp góc tương ứng) (3)
Mặt khác ta có \(D\) thuộc cạnh \(B C\) nên \(\hat{E D C} + \hat{E D B} = 18 0^{\circ}\). (4)
Từ (3) và (4) suy ra \(\hat{B D K} + \hat{E D B} = 18 0^{\circ}\).
Hay ba điểm \(E , D , K\) thẳng hàng.
a) Tính \(P \left(\right. x \left.\right) = A \left(\right. x \left.\right) + B \left(\right. x \left.\right)\)
\(A \left(\right. x \left.\right) + B \left(\right. x \left.\right) = \left(\right. x^{3} - 2 x^{2} + 5 x - 3 \left.\right) + \left(\right. - x^{3} + 2 x^{2} - 3 x + 5 \left.\right)\)
\(= x^{3} - 2 x^{2} + 5 x - 3 - x^{3} + 2 x^{2} - 3 x + 5\)
\(= \left(\right. x^{3} - x^{3} \left.\right) + \left(\right. - 2 x^{2} + 2 x^{2} \left.\right) + \left(\right. 5 x - 3 x \left.\right) + \left(\right. - 3 + 5 \left.\right)\)
\(= 2 x + 2\)
b) \(Q \left(\right. x \left.\right) = A \left(\right. x \left.\right) . C \left(\right. x \left.\right) = \left(\right. x^{3} - 2 x^{2} + 5 x - 3 \left.\right) \left(\right. x - 3 \left.\right)\)
\(= \left(\right. x^{3} - 2 x^{2} + 5 x - 3 \left.\right) . \left(\right. x - 3 \left.\right)\)
\(= x^{3} . x - 2 x^{2} . x + 5 x . x - 3. x - 3 x^{3} - 3. \left(\right. - 2 x^{2} \left.\right) - 3.5 x + \left(\right. - 3 \left.\right) . \left(\right. - 3 \left.\right)\)
\(= x^{4} - 2 x^{3} + 5 x^{2} - 3 x - 3 x^{3} + 6 x^{2} - 15 x + 9\)
\(= x^{4} + \left(\right. - 2 x^{3} - 3 x^{3} \left.\right) + \left(\right. 5 x^{2} + 6 x^{2} \left.\right) + \left(\right. - 3 x - 15 x \left.\right) + 9\)
\(= x^{4} - 5 x^{3} + 11 x^{2} - 18 x + 9\)
c) Để tìm nghiệm của đa thức \(P \left(\right. x \left.\right)\). Ta cần tìm giá trị của \(x\) để \(2 x + 2 = 0\).
\(2 x + 2 = 0\)
\(2 x = - 2\)
\(x = - 1\)
a) A = { 0;1;2;3;4;5;6;7;8;9}
b) B = { 2;3;5;7}
Ta thấy tập \(A\) có \(10\) phần tử, tập \(B\) có \(4\) phần tử.
Xác suất của biến biến cố \(B\) là:
\(\frac{4}{10} = \frac{2}{5}\)
2. a) Cửa hàng đông khách nhất vào thời điểm \(11\) giờ, vắng khách nhất vào thời điểm \(9\) giờ.
b) Từ \(15\) giờ đến \(17\) giờ, số lượt khách đến cửa hàng tăng:
\(45 - 30 = 15\) (lượt khách)
Theo bất đẳng thức tam giác:
\(A B - A C < B C < A B + A C\)
5 < BC < 7
BC= 6 cm
Vậy tam giác ABC cân tại B.
a) \(V_{A B C D \cdot A ' B^{'} C^{'} D^{'}} = 10.8.5 = 400 \left(\right. \&\text{nbsp}; c m^{3} \left.\right)\)
b) \(V_{A D E \cdot A^{'} D^{'} E^{'}} = \frac{1}{2} \cdot 3 \cdot 10.8 = 120 \left(\right. \&\text{nbsp}; c m^{3} \left.\right)\)
V khối gỗ= V ABCD•A’B’C’D' + V ADE• A’D’E' = 400 + 120= 520 ( cm3)
a) Do \(A B < A C\) nên \(\hat{C} < \hat{B}\).
Vậy \(\hat{C} < \hat{B} < \hat{A}\).
b) Xét \(\triangle A B C\) và \(\triangle A D C\).
\(B A C = D A C = 9 0^{\circ} ; B A = A D ; A C\) cạnh chung.
\(\Delta A B C = \triangle A D C\) (hai cạnh góc vuông).
\(B C = A D\) (cạnh tương ứng) \(\Rightarrow \triangle C B D\) cân tại \(C\).
c) Xét \(\triangle C B D\) có \(C A , B E\) là trung tuyến (gt).
Nên \(I\) là trọng tâm \(\triangle C B D\).
Suy ra \(D I\) cắt \(B C\) tại trung điểm của \(B C\).
Tổng số học sinh là \(1 + 5 = 6\) HS
Xác suất của biến cố bạn được chọn là nam là \(\frac{1}{6}\).
P(x)=−7x6+3x2+5x.
Bậc của đa thức \(P \left(\right. x \left.\right)\) bằng 6.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5} = \frac{y}{11} = \frac{x + y}{5 + 11} = \frac{32}{16} = 2\)
Suy ra: \(x = 2.5 = 10\)
\(y = 2.11 = 22\)