

Nguyễn Ngọc Lan
Giới thiệu về bản thân



































Gọi cạnh đáy, chiều cao của hình vuông lần lượt là: \(x\) (dm); \(h\) (dm), \(\left(\right. x ; y > 0 \left.\right)\)
Ta có thể tích của hình hộp chữ nhật là: \(V = x^{2} . h = 8\)
Suy ra \(h = \frac{8}{x^{2}}\)
\(S_{t p} = 2 x^{2} + 4 x h = 2 x^{2} + 4 x . \frac{8}{x^{2}} = 2 x^{2} + \frac{32}{x}\)
Áp dụng BĐT Cauchy cho ba số dương ta được:
\(S_{t p} = 2 x^{2} + \frac{32}{x} = 2 x^{2} + \frac{16}{x} + \frac{16}{x} \geq 3. \sqrt[3]{2 x^{2} . \frac{16}{x} . \frac{16}{x}} = 24\)
Dấu "=" xảy ra khi \(2 x^{2} = \frac{16}{x}\)
\(x = 2\) (thỏa mãn).
Vậy độ dài cạnh đáy của hình hộp muốn thiết kế là: \(2\) dm.
a) Ta có \(M K\), \(B K\) là các tiếp tuyến của \(\left(\right. O \left.\right)\)
Suy ra \(\hat{O M K} = \hat{O B K} = 9 0^{\circ}\) (tính chất tiếp tuyến)
Suy ra \(\Delta M K O\) vuông tại \(M\), \(\Delta O B K\) vuông tại \(B\).
Dựng đường trung tuyến \(M I\), \(B I\) lần lượt trong \(\Delta M K O , \Delta O B K\) với \(I\) là trung điểm của \(O K\).
Suy ra \(I M = I O = I K = I B = \frac{1}{2} O K\) (tính chất đường trung tuyến trong tam giác vuông)
Suy ra các điểm \(M\), \(O\), \(K\), \(B\) đều nằm trên đường tròn \(\left(\right. I \left.\right)\)
Vậy tứ giác \(M O B K\) là tứ giác nội tiếp.
Theo mẫu 1:
Vì đáy bể là hình vuông có độ dài đường chéo là \(4\) m nên diện tích đáy bể là: \(S_{1} = 4.4 : 2 = 8\) m2
Thể tích của bể theo mẫu 1 là: \(V_{1} = S_{1} . h_{1} = 8.2 = 16\) m3
Theo mẫu 2:
Bán kính đáy bể hình trụ là: \(R = d : 2 = 4 : 2 = 2\) m
Thể tích của bể theo mẫu 2 là: \(V_{2} = \pi . R^{2} . h_{2} = \pi 2^{2} . 2 \approx 25 , 13\) m3
Vì \(V_{2} > V_{1}\) nên người đó nên chọn xây theo mẫu thiết kế số 2 để có được bể dự trữ nước là nhiều nhất.
Ta có \(\Delta^{'} = \left[\right. - \left(\right. m - 3 \left.\right) \left]\right.^{2} - 1. \left[\right. - 2 \left(\right. m - 1 \left.\right) \left]\right. = \left(\right. m - 3 \left.\right)^{2} + 2 m - 2\)
\(\Delta^{'} = m^{2} - 4 m + 7 = \left(\right. m - 2 \left.\right)^{2} + 3 > 0 , \forall m\)
Do đó phương trình đã cho luôn có hai nghiệm phân biệt \(x_{1} , x_{2}\)
Theo định lí Viète, ta có: \(x_{1} + x_{2} = \frac{- b}{a} = 2 \left(\right. m - 3 \left.\right) ; x_{1} . x_{2} = \frac{c}{a} = - 2 \left(\right. m - 1 \left.\right)\)
Ta có: \(T = x_{1}^{2} + x_{2}^{2} = \left(\right. x_{1} + x_{2} \left.\right)^{2} - 2 x_{1} x_{2}\)
\(T = \left[\right. - 2 \left(\right. m - 3 \left.\right) \left]\right.^{2} - 2 \left[\right. - 2 \left(\right. m - 1 \left.\right) \left]\right.\)
\(T = 4 m^{2} - 20 m + 32 = \left(\right. 2 m - 5 \left.\right)^{2} + 7 \geq 7\)
Suy ra giá trị nhỏ nhất của \(T\) bằng \(7\) khi \(m = \frac{5}{2}\)
Vậy \(m = \frac{5}{2}\) là giá trị cần tìm.
Gọi số tiền điện hộ gia đình bác An trả trong 7/2024 là \(x\) (nghìn đồng), \(\left(\right. 0 < x < 500 \left.\right)\).
Gọi số tiền tiền điện hộ gia đình bác Bình trả trong tháng 7 năm 2024 là \(y\) (nghìn đồng), \(\left(\right. 0 < y < 500 \left.\right)\).
Số tiền điện hộ gia đình bác An được giảm trong tháng 8 năm 2024 là: \(15 \% x\) (nghìn đồng)
Số tiền điện hộ gia đình bác Bình được giảm trong tháng 8 năm 2024 là: \(10 \% y\) (nghìn đồng)
Theo đề bài ta có hệ phương trình:\(\begin{cases}x+y=500\left(1\right)\\ 0,15x+0,1y=65\left(2\right)\end{cases}\)
Từ \(\left(\right. 1 \left.\right)\) suy ra \(y = 500 - x \left(\right. 3 \left.\right)\)
Thay \(\left(\right. 3 \left.\right)\) vào \(\left(\right. 2 \left.\right)\) ta được \(0 , 15 x + 0 , 1 \left(\right. 500 - x \left.\right) = 65\)
\(0 , 05 x = 15\)
\(x = 300\) (nhận).
Thay \(x = 300\) vào \(\left(\right. 3 \left.\right)\) ta được \(y = 200\) (nhận)
Vậy số tiền điện hộ gia đình bác Bình trả trong tháng 7 là \(200\) nghìn đồng, gia đình bác An trả trong tháng 7 là \(300\) nghìn đồng.
Gọi số xe theo dự định là \(x\) chiếc (\(x \in \mathbb{N}^{*}\))
Lượng hàng mỗi xe phải chở theo kế hoạch là: \(\frac{120}{x}\) (tấn)
Do lúc sắp khởi hành đội được bổ sung thêm \(5\) chiếc xe cùng loại nên suy ra: số xe thực tế chở là: \(x + 5\) (chiếc)
Lượng hàng mỗi xe phải chở theo thực tế là: \(\frac{120}{x + 5}\) (tấn)
Theo bài ra ta có phương trình:
\(\frac{120}{x}\) - \(\frac{120}{x + 5} = 2\)
\(\frac{120\left(x+5\right)}{x\left(x+5\right)}-\frac{120x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)
\(120x+600-120x=2x^2+10x\)
\(2x^2+10x-600=0\)
\(x^{2} + 5 x - 300 = 0\)
Giải phương trình được \(x_{1} = 15\), \(x_{2} = - 20\)
\(x = - 20\) không thỏa mãn (loại)
\(x = 15\) (thỏa mãn)
Vậy số xe ban đầu là \(15\) xe.
a) Thay \(x = \frac{1}{4}\) (thỏa mãn điều kiện) vào biểu thức \(A\)
\(A = \frac{\frac{1}{4}}{\sqrt{\frac{1}{4}} + 1} = \frac{\frac{1}{4}}{\frac{1}{2} + 1} = \frac{1}{6}\)
Vậy với \(x = \frac{1}{4}\) thì giá trị của biểu thức \(A = \frac{1}{6}\)
b) \(B = \frac{3}{\sqrt{x} + 1} + \frac{1}{1 - \sqrt{x}} + \frac{x + 5}{x - 1}\)
\(= \frac{3}{\sqrt{x} + 1} - \frac{1}{\sqrt{x} - 1} + \frac{x + 5}{\left(\right. \sqrt{x} + 1 \left.\right) \left(\right. \sqrt{x} - 1 \left.\right)}\)
\(= \frac{3 \sqrt{x} - 3 - \sqrt{x} - 1 + x + 5}{\left(\right. \sqrt{x} + 1 \left.\right) \left(\right. \sqrt{x} - 1 \left.\right)}\)
\(= \frac{x + 2 \sqrt{x} + 1}{\left(\right. \sqrt{x} + 1 \left.\right) \left(\right. \sqrt{x} - 1 \left.\right)}\)
\(= \frac{\left(\right. \sqrt{x} + 1 \left.\right)^{2}}{\left(\right. \sqrt{x} + 1 \left.\right) \left(\right. \sqrt{x} - 1 \left.\right)}\)
\(= \frac{\sqrt{x} + 1}{\sqrt{x} - 1}\)
Vậy \(B = \frac{\sqrt{x} + 1}{\sqrt{x} - 1}\) (đpcm)
c) Ta có
\(P = A . B = \frac{x}{\sqrt{x} + 1} . \frac{\sqrt{x} + 1}{\sqrt{x} - 1} = \frac{x}{\sqrt{x} - 1}\).
\(P \leq 4\)
\(\frac{x}{\sqrt{x} - 1} \leq 4\)
\(\frac{x}{\sqrt{x} - 1} - 4 \leq 0\)
\(\frac{x - 4 \sqrt{x} + 4}{\sqrt{x} - 1} \leq 0\)
\(\frac{\left(\right. \sqrt{x} - 2 \left.\right)^{2}}{\sqrt{x} - 1} \leq 0\)
Xét phép thử \(P\): "Quay đĩa tròn một lần".
Ta có số kết quả của phép thử \(P\) là: \(n_{P} = 6\)
Xét biến cố \(A\): "Chiếc kim chỉ vào hình quạt ghi số chia hết cho \(3\)".
các kết quả thuận lợi để biến cố \(A\) xảy ra là : \(3\); \(6\).
Vậy \(n \left(\right. A \left.\right) = 2\)
Suy ra xác suất của biến cố \(A\) là \(P \left(\right. A \left.\right) = \frac{n \left(\right. A \left.\right)}{n_{P}} = \frac{2}{6} = \frac{1}{3}\).
tần số ghép nhóm của nhóm [60; 70) là 10
tần số tương đối ghép nhóm của nhóm [60; 70) là 10: 40 * 100 = 25%
a) Thùng nước là một hình trụ có chiều cao \(h = 1\) m, chu vi đáy là \(C = 2\) m.
Gọi \(R\) là bán kính đáy của hình trụ
Ta có : \(C = 2 \pi . R\), suy ra \(R = \frac{1}{\pi}\) (m)
Thể tích của hình trụ là : \(V = \pi R^{2} h = \pi \left(\right. \frac{1}{\pi^{2}} \left.\right) . 1 = \frac{1}{\pi} \approx 0 , 32\) m3.
Vậy thùng đựng được \(0 , 32\) m3 nước.
b) Để lấy bóng, em bé chỉ cần đổ đầy nước vào thùng tôn. Em bé cần lấy ít nhất \(0 , 32\) m3 nước thì bóng nổi trên mặt thùng tôn khi đó sẽ an toàn.