

Nguyễn Ngọc Anh Minh
Giới thiệu về bản thân



































\(=3^2.3^n-2^2.2^n+3^n-2^n=10.3^n-5.2^n=\)
\(=10.3^n-10.2^{n-1}=10.\left(3^n-2^n\right)⋮10\)
Theo đề bài
\(13.\overline{c2d}=\overline{2ab1}\)
Tích có chữ só hàng đơn vị là 1 => d=7
\(\Rightarrow13.\overline{c27}=\overline{2ab1}\)
\(\Leftrightarrow1300.c+13.27=2001+10.\overline{ab}\)
\(\Leftrightarrow1300.c=10.\overline{ab}+1650\)
\(\Leftrightarrow130.c=\overline{ab}+165\)
\(130.c⋮10\Rightarrow\overline{ab}+165⋮10\Rightarrow b=5\)
\(\Rightarrow130.c=\overline{a5}+165\)
\(\Rightarrow130.c=10.a+5+165=10.a+170\)
\(\Leftrightarrow13.c=a+17\) (1)
Ta có
\(0\le a\le9\Rightarrow17\le a+17\le26\Rightarrow17\le13.c\le26\Rightarrow c=2\) Thay vào (1)
\(\Rightarrow a=9\)
KL: a=9; b=5; c=2; d=7
Số các số hạng (số ngoặc đơn) là
\(\dfrac{79-1}{2}+1=40\) số hạng
Biểu thức viết thành
\(40x+\left(1+3+5+...+79\right)=41x\)
Tổng của 1+3+5+...+79 là
\(\dfrac{40x\left(1+79\right)}{2}=1600\)
\(\Rightarrow40x+1600=41x\Rightarrow x=1600\)
Diện tích bề mặt chiếc bánh
25x25=625 cm2
Diện tích mỗi mảnh tam giác
625:8=78,125 cm2
a/
Xét tg vuông ABH
\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông ACH có
\(AH^2=AN.AC\) (lý do như trên)
\(\Rightarrow AM.AB=AN.AC\)
b/
\(AN\perp AB;MH\perp AB\) => AN//MH
\(AM\perp AC;NH\perp AC\) => AM//NH
=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
Mặt khác \(\widehat{A}=90^o\)
=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)
Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABH đồng dạng với tg ACH
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế
\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)
Xét tg vuông ABH
\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)
Xét tg vuông ACH, c/m tương tự
\(NH^2=CN.AN\) (3)
Thay (2) và (3) vào (1)
(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)
Mà AM = NH; AN = MH (cmt)
\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)
Số cần tìm cộng thêm 1 đơn vị thì chia hết cho 2,3,4,5,6,7
Số chia hết 4,5,6,7 thì cũng chia hết cho 2 và 3
Số nhỏ nhất chia hết cho 4,5,6,7 là
4x5x6x7=840
Số nhỏ hơn 2000 lớn hơn 1000 thoả mãn đề bài là
840x2=1680
O là giao của AH và EF
\(AF\perp AB;HE\perp AB\) => AF//HE
\(AE\perp AC;HF\perp AC\) => AE//HF
=> AEHF là hình bình hành mà \(\widehat{A}=90^o\) => AEHF là HCN
\(\Rightarrow AH=EF\) (trong HCN hai đường chéo băng nhau)
\(OA=OH;OE=OF\) (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
=> OE=OH => tg OEH cân tại O
Vì AEHF là HCN nên
\(\widehat{EAF}=\widehat{EHF}=90^o\) => A và H cùng nhìn EF dưới 1 góc vuông => AEHF là tứ giác nội tiếp đường tròn tâm O bán kính EF
Xét tg vuông BEH có
IB=IH (gt) \(\Rightarrow IE=IB=IH=\dfrac{BH}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg IEH cân tại I \(\Rightarrow\widehat{IEH}=\widehat{IHE}\) (1)
tg OEH cân tại O (cmt) \(\Rightarrow\widehat{OEH}=\widehat{OHE}\) (2)
Mà \(\widehat{IHE}+\widehat{OHE}=\widehat{AHB}=90^o\) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{IEH}+\widehat{OEH}=\widehat{FEI}=90^o\)
\(\Rightarrow IE\perp EF\) mà EF là đường kính (O) => IE là tiếp tuyến đường tròn (O).
C/m tương tự ta cũng có \(JF\perp EF\) => JF cũng là tiếp tuyến với (O)
=> IE//JF (cùng vuông góc với EF)
Gọi số cần tìm là \(\overline{A5}\) theo đề bài
\(\overline{A5}-A=104\)
\(10xA+5-A=104\)
\(9xA=99\Rightarrow A=99:9=11\)
Số cần tìm là 115
a/
Xét tg ADE có
\(\widehat{ADE}=\widehat{CDE}\) (gt) (1)
\(\widehat{AED}=\widehat{CDE}\) (góc so le trong) (1)
Từ (1) và (2) => \(\widehat{ADE}=\widehat{AED}\) => tg ADE là tg cân tại A
=> AD=AE (3)
Xét tg CBF có
\(\widehat{CBF}=\widehat{ABF}\) (gt) (4)
\(\widehat{CFB}=\widehat{ABF}\) (góc so le trong) (5)
Từ (4) và (5) => \(\widehat{CBF}=\widehat{CFB}\) => tg CBF cân tại C
=> CB=CF (6)
Ta có
AD=CB (cạnh đối hình bình hành) (7)
Từ (3) (6) (7) => AD=AE=CB=CF
Mà \(\widehat{DAE}=\widehat{BCF}\) (góc đối hình bình hành)
=> tg ADE = tg CBF (c.g.c)
=> tg ADE và tg CBF là những tg cân bằng nhau
b/
tg ADE = tg CBF (cmt) \(\Rightarrow\widehat{BFC}=\widehat{ADE}\)
Mà \(\widehat{EDC}=\widehat{ADE}\) (gt)
\(\Rightarrow\widehat{BFC}=\widehat{EDC}\) Hai góc này ở vị trí đồng vị => DE//BF (8)
Ta có
AB//CD (cạnh đối hình bình hành) => BE//DF (9)
Từ (8) (9) => DEBF là hình bình hành (tứ giác có các cặp cạnh đối // với nhau là hình bình hành)
Trước đây 2 năm:
chia tuổi bố thành 4 phần bằng nhau thì tuổi An là 1 phần
Hiệu số phần bằng nhau chỉ hiệu giữa tuổi bố và tuổi An là
4-1=3 phần
Phân số chỉ tuổi An là
1:3=1/3 hiệu
Sau 10 năm:
chia tuổi bố thành 11 phần bằng nhau thì tuổi An là 5 phần
Hiệu số phần bằng nhau chỉ hiệu giữa tuổi bố và tuổi An là
11-5=6 phần
Phân số chỉ tuổi An là
5:6=5/6 hiệu
Do mỗi năm mỗi người tăng thêm 1 tuổi nên hiệu giữa tuổi bố và tuổi A không thay đổi
Trước đây 2 năm và sau 10 năm tuổi An tăng thêm là
2+10=12 tuổi
Phân số chỉ 12 tuổi là
5/6-1/3=1/2 hiệu
Hiệu tuổi bố và tuổi An là
12:1/2=24 tuổi
Tuổi An cách đây 2 năm là
24x1/3=8 tuổi
Tuổi An hiện nay là
8+2=10 tuổi
Tuổi bố hiện nay là
10+24=34 tuổi